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a b s t r a c t 

The three-dimensional radial propagation of wave disturbances over a slightly compress- 

ible fluid of constant depth is discussed. We focus on resonant triads comprising two grav- 

ity modes and one acoustic mode. The derivation of the evolution equations in a non- 

integral form is made possible by approximating the radial solution by cosine functions in 

two regions, inner and outer, that are matched at a location where all relevant derivatives 

are in agreement with the exact Bessel solution. When the interaction takes place in the 

inner region of all modes, the amplitude evolution equations are found to be similar to 

the two-dimensional case. However, focusing of one gravity mode and de-focusing of the 

other is observed when the interaction involves an inner region of the acoustic mode, and 

outer regions of the gravity modes. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In classical water-wave theory, water is often treated as incompressible; an assumption that is valid for many applications

in linear theory, where surface (gravity) waves and acoustic (compressible) waves are virtually decoupled. This assumption

is appropriate when the wave disturbance propagates to the bottom at relatively short time compared to the period [8] ,

i.e. when h/c � T , where h is the water depth, c is the speed of sound in water, and T is the wave period. Accounting for

both compressibility and gravity effects reveals two types of wave motions: (1) surface waves with fluid motion that decays

exponentially with depth; and (2) non-evanescent longitudinal compression waves. Among the first that considered this

setting were wroks done by Pidduck [11 , 12] , who studied the propagation of an impulse applied on a water surface; Whiple

and Lee [13] , who showed that the two types of waves exist when the wave period is a few seconds long; and Longuet-

Higgins [8] who focused on second-order pressure variations. For reviews of the general theory of wave interactions see

[10] and [1] . 

Longeut Higgins [8] demonstrated that quadratic nonlinear interactions of two trains of monochromatic gravity waves

of identical frequencies and opposite directions can excite compression modes. Such special triad interactions comprise a

standing compression mode at a cut-off frequency 2 ω, and two subharmonic surface waves with frequency ω and opposite

wavenumbers k . The resonances found by Longuet-Higgins [8] are particular examples of resonant triads involving a propa-

gating acoustic wave mode and two oppositely travelling subharmonic surface waves, as demonstrated numerically by Kadri

and Stiassnie [2] . The general two-dimensional (2D) asymptotic theory for resonant triad interactions of acoustic–gravity
∗ Corresponding author. 
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waves was developed by Kadri and Akylas [4] , and more recently a steady-state solution for resonant acoustic–gravity waves

has been reported by Yang et al. [14] . 

Here, we extend the general solution and develop an asymptotic theory for three-dimensional (3D) resonant triad in-

teractions of acoustic–gravity wave disturbances in cylindrical coordinates. Similar to Kadri and Akylas [4] , such resonant

interaction depends on a small parameter μ = gh / c 2 that governs the effects of gravity relative to compressibility, where g

is the gravitational acceleration. Thus, free-surface wave disturbances feature vastly different spatial and/or temporal scales

from the acoustic mode. 

A major challenge in the 3D analysis is the radial solution that is governed by Bessel functions, which makes collecting

secular terms a cumbersome, if not an impossible, task. Alternatively, one could follow an integral form analysis, e.g. as in

[9] , though this would require a numerical evaluation of the integrals that is beyond the scope of the current study. Here,

we provide a non-integral approximated closed form solution. To overcome the difficulty of collecting secular terms, we

approximate the radial potential solution (and its derivatives) by cosine functions in two regions, inner and outer, matched

at a location where all relevant derivatives are approximated to satisfactory agreement with the original Bessel functions,

following [6] . The amplitude evolution equations are then derived for three regions: (1) inner for all three modes; (2) mixed,

i.e. inner for the acoustic and outer for the gravity; and (3) outer for all three modes. In the latter scenario, the waves

disperse ∝ 1 / 
√ 

r , thus the interaction is weak and effectively there is no energy share between the triad members. In the

inner-inner region the solution is almost identical to that of the 2D case. In the mixed region the interaction is dictated by

the vertical profile of the wave packets, and focusing of one gravity mode and de-focusing of the other is observed. 

2. Preliminaries and formulation 

Based on irrotationality, the surface gravity and acoustic–gravity wave problems are formulated in terms of the velocity

potential ϕ( r, z, t ), where u = ∇ϕ := (ϕ r , ϕ z ) is the velocity field assuming radial symmetry ( ∂ θ = 0 ). Viscosity and surface

tension are neglected, and we shall use dimensionless variables, employing μh as lengthscale and h / c as timescale. As in

[8] , the governing equation is the fully nonlinear wave equation 

ϕ tt − 1 

μ2 

(
ϕ rr + 

1 

r 
ϕ r + ϕ zz 

)
+ ϕ z + (|∇ϕ| 2 ) t + 

1 
2 

u · ∇ 

(|∇ϕ| 2 ) = 0 . (2.1)

The boundary condition on the rigid bottom at z = −1 /μ reads 

ϕ z = 0 (z = −1 /μ) . (2.2) 

Finally, on the free surface z = ζ (r, t) , we consider the standard dynamic and kinematic boundary conditions (
∂ϕ 

∂t 
+ 

1 

2 

|∇ϕ| 2 + z 

)
z= ζ = 0 ;

(
ζt + ζr ϕ r − ϕ z 

)
z= ζ = 0 . (2.3) 

After expanding the two conditions about z = 0 , correct up to cubic terms in the perturbation, and eliminating ζ yields the

combined free-surface condition 

ϕ tt + ϕ z + (|∇ ϕ| 2 ) t + 

1 
2 
∇ ϕ · ∇ 

(|∇ ϕ| 2 ) − [ ϕ t (ϕ tt + ϕ z ) ] z 

−
[
ϕ t (|∇ϕ| 2 ) t 

]
z − 1 

2 

[
(ϕ tt + ϕ z ) 

(|∇ϕ| 2 − ϕ 

2 
t 

)]
z = 0 (z = 0) . (2.4) 

2.1. Linear solution 

By dropping the nonlinear terms in (2.1) and (2.4) , we seek modes that radiate with frequency ω in the form 

ϕ = R (r) Z(z) exp 

(
1 

2 

μ2 z 

)
exp ( −i ωt ) . (2.5) 

Upon substituting (2.5) into (2.1) , a separation of variables produces a set of two ordinary differential equations, the first

being in the vertical direction, 

Z zz −
(

k 2 − μ2 ω 

2 + 

1 

4 

μ4 
)
Z = 0 , (2.6) 

and the second in the radial direction, 

R rr + 

1 

r 
R r + k 2 R = 0 , (2.7) 

where k stands for the eigenvalue of the problem. The detailed solution in the vertical direction is given by [4] who showed

that for λ = O (1) and μ � 1 the solution decays exponentially into the fluid 

Z = exp (| k | z) + O (μ) , (2.8) 

and ω satisfies the well known dispersion relation for surface gravity waves on deep water 

ω 

2 = | k | + O (μ4 ) . (2.9) 
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On the other hand, when λ2 < μ2 ω 

2 the vertical profile in (2.6) becomes oscillatory, with 

Z = cos 
(
ω 

2 − κ2 
)
(Z + 1) − μ

2 ω 

sin 

(
ω 

2 − κ2 
)
(Z + 1) + O (μ2 ) , (2.10)

where Z = μz and the eigenvalue k was rescaled to μκ for κ = O (1) to allow using h as a characteristic length, instead of

μh , and ω satisfies, to leading order, the dispersion relation for acoustic modes 

ω 

2 = ω 

2 
n + κ2 + μ

ω 

2 
n − κ2 

ω 

2 
n + κ2 

+ O (μ2 ) (n = 0 , 1 , 2 , ... ) (2.11)

with ω n = (n + 1 / 2) π . For the radial Eq. (2.7) , we seek a propagating wave solution of the form 

R = C 1 J 0 (kr) + i C 2 J 0 

(
kr − π

2 

)
, (2.12)

where J 0 is the Bessel function of the first kind and C 1 , C 2 are coefficients determined from the boundary-value problem. In

the far field, J 0 oscillates and behaves like a damped cosine function, namely, 

J 0 (kr) ≈
√ 

2 

πkr 
cos 

(
kr − π

4 

)
. (2.13)

2.2. Three-dimensional resonant triads 

The existence of resonant triads in the acoustic–gravity wave family has been presented numerically by Kadri and Sti-

assnie [2] , and various triad combinations were reported by Kadri [3] . However, the importance of cubic terms at the limit

μ � 1 was first demonstrated by Kadri and Akylas [4] . Here, we discuss acoustic–gravity wave triad resonance in 3D space.

In particular, we consider the evolution equations of two gravity modes of complex amplitudes S ± and frequencies ω ± in-

teracting with an acoustic mode of amplitude A and frequency ω: 

S + e i (k + r−ω + t) , S −e i (k −r−ω −t) , A e i (μκr−ωt) . (2.14)

The gravity waves satisfy the dispersion relation (2.9) , whereas the acoustic mode ( μκ , ω) satisfies the dispersion relation

(2.11) . The triad resonance requires that 

ω + + ω − = ω + μβ, k + + k − = μκ, (2.15)

where β = O (1) is a detuning parameter. It follows from the resonance condition (2.15) that two gravity modes are counter-

propagating waves with nearly idential wavenumbers. We introduce a positive wavenumber k , such that 

k + = k + 

1 

2 

μκ , k − = −k + 

1 

2 

μκ , (2.16)

and therefore a direct calculation yields 

ω ± = k 1 / 2 
(

1 ± μκ

4 k 

)
+ O 

(
μ2 

)
. (2.17)

It then follows that 

ω = 2 k 1 / 2 + O 

(
μ2 

)
, (2.18)

where 

4 k = ω 

2 
n + κ2 + μ

ω 

2 
n − κ2 

ω 

2 
n + κ2 

. (2.19)

The velocity potential of gravity waves is O ( ε), while the velocity potential of the excited acoustic wave grows to α = O (1)

due to its small contributions to free-surface elevation. Based on the scaling argument carried out in [4] , we have ε = αμ1 / 2 .

In the subsequent analysis, we derive the amplitude evolution equations subject to a resonant triad whose velocity potential

is expanded as 

ϕ = ε
{ 

S + (T ) R (k + r) e | k + | z e −i ω + t + c.c. 

} 

+ ε
{ 

S −(T ) R (k −r) e | k −| z e −i ω −t + c.c. 

} 

+ α
{ 

A (T ) R (μκr) cos ω n (Z + 1) e −i ωt + c.c. 

} 

+ . . . , (2.20)

where T = μt is a slow time variable. 
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3. Approximate solution 

The derivation of the evolution equations, which is presented in the following section, requires collecting secular terms.

The collection process is rather straightforward when the motion is 2D as in [4] , which uses complex exponents. However,

here the collection involves quadratic and cubic terms of zeroth, first and second derivatives of J 0 , which is a cumbersome

exercise. To overcome this difficulty we partially implement a matching technique developed by Kadri [6] to approximate

the Bessel function and its first and second derivatives about the origin. The matching comprises inner and outer solutions.

The inner solution is approximated by a simple cosine function, 

J 0 ,in (r) = cos (M r) , (3.1) 

where M = 0 . 6967398 is a matching parameter calculated originally by matching J 0, in with J 0 at r = π/ e . We match the

inner solution with an outer solution of the form 

J 0 ,out (r) = 

√ 

2 

πb 1 r 
cos ( b 2 r − b 3 ) , (3.2) 

where b 1 , b 2 and b 3 are matching parameters. For the zeroth derivative we require that 

− cos (M r) + 

√ 

2 

πb 1 r 
cos ( b 2 r − b 3 ) = 0 , (3.3) 

and similarly for the first and second derivatives, 

M sin (M r) − b 2 

√ 

2 

πb 1 r 
sin (b 2 r − b 3 ) − 1 

2 

√ 

2 

πb 1 r 3 
cos (b 2 r − b 3 ) = 0 , (3.4)

M 

2 cos (M r) −
(

b 2 2 √ 

r 
− 3 

4 

√ 

r 5 

)√ 

2 

πb 1 
cos (b 2 r − b 3 ) + b 2 

√ 

2 

πb 1 r 3 
sin (b 2 r − b 3 ) = 0 . (3.5)

Noting that the matching can be carried out at a range of r , where r ≤ π / e , and we choose r = 1 for simplicity. With the

values of b 1 , b 2 , and b 3 at hand, we are able to design a solution whose first and second derivatives are also matched. Note

that the outer solution does not coincide with J 0 ( r ) as r → ∞ , since for the standard far-field solution to be met one should

impose b 1 = b 2 = 1 and b 3 = π/ 4 . To this end, a second matching with the far-field at multiple locations can be performed

as detailed by Kadri [6] . However, here we have no interest in the far-field since the waves disperse ∝ 1 / 
√ 

r , and thus the

interaction is weak. Moreover, a more accurate matching can be obtained by adopting a three-point matching at r 1 , r 2 , r 3 ,

one for each derivative. However, this will require collecting secular terms at more regions, e.g. at [0, r 1 ], [ r 1 , r 2 ], [ r 2 , r 3 ],

and [ r 3 , ∞ ), as opposed to two regions, [0,1] and [1, ∞ ), when choosing a single matching point at r = 1 , as demonstrated

in the next section. 

4. Amplitude evolution equations 

Since the acoustic mode is much longer than the gravity mode, attention is focused on three scenarios of interest where

the interaction could take place: (1) inner approximation for both acoustic and gravity modes; (2) inner approximation for

the acoustic mode and outer for the gravity mode; and (3) outer approximation for both modes. 

4.1. Inner-inner region 

We employ the approximation in (3.1) for all modes so that the potential takes the form, 

ϕ = ε
[ 

S + (T ) e | k + | z e i (M k + r−ω + t) + c.c. 

] 
+ ε

[ 
S −(T ) e | k −| z e i (M k −r−ω −t) + c.c. 

] 
+ α

[ 
A (T ) cos ω n (Z + 1) e i (M μκr−ωt) + c.c. 

] 
+ · · · . (4.1) 

Upon substituting (4.1) into (2.1), (2.2) , and (2.4) , collecting terms that result in secular behaviour, and imposing solvability

conditions, the amplitude evolution equations for the acoustic and gravity modes are derived as detailed below. 

4.1.1. Acoustic mode 

For the acoustic mode, we collect terms ∝ exp [ i (M μκr − ωt) ] . The correction is posed as

ε2 { F (Z, T ) exp [ i (M μκr − ωt) ] + c.c. } , where F satisfies the boundary-value problem 

F ZZ + ω 

2 
n F = R 1 (−1 < Z < 0) , (4.2) 

−ω 

2 F = R 2 (Z = 0) , (4.3) 
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F Z = 0 (Z = −1) , (4.4)

with 

R 1 = − 1 

α

[
2 i ω 

∂A 

∂T 
cos ω n (Z + 1) + ω n A sin ω n (Z + 1) 

]
− 2 i ωk 2 S + S −e 2 kz e i βT 

(
1 + M 

2 
)
, (4.5)

and 

R 2 = 

1 

α
(−1) n ω n A + 2 i ωk 2 S + S −e i βT 

(
1 + M 

2 
)
. (4.6)

Since cos ω n (Z + 1) is a homogeneous solution, the forcing R 1 and R 2 must obey ∫ 0 

−1 

R 1 cos ω n (Z + 1) d Z = −(−1) n 
ω n 

ω 

2 
R 2 . (4.7)

Redefining A → A e i βT , in order to eliminate the exponential factor, it follows that 

∂A 

∂T 
= i A 

(
κ2 − ω 

2 
n 

2 ω 

3 
− 2 β

)
+ 

(−1) n 

8 

αω n ω 

2 S + S −
(
1 + M 

2 
)
. (4.8)

Choosing M = 1 results in a 2D solution which is in agreement with [4] . Note that the same solution has been confirmed

using the software Maple. For the case of an infinitely long acoustic mode, or two gravity waves with the same wave

numbers, κ = 0 , ω n = ω, the spatial dependence in the envelope dynamics can be invoked. Introducing the slow spatial

variable R = μ3 / 2 r, the evolution equation takes the form 

∂A 

∂T 
= − i 

2 ω 

(
∂ 2 A 

∂R 

2 
+ 

1 

R 

∂A 

∂R 

+ A 

)
+ 

(−1) n 

8 

αω 

3 S + S −
(
1 + M 

2 
)
. (4.9)

The interested reader is referred to [4,5] for more details about the derivation method of (4.9) . In the sequel we only derive

the temporal evolution equations, as the spatial is identical to (4.9) in exact resonant cases and can be easily involved. 

4.1.2. Gravity modes 

On the other hand, for the gravity modes we collect terms ∝ exp [ i (M k ±r − ω ±t) ] . Here, the correction is posed as

ε3 { G ±(Z) exp [ i (M k ±r − ω ±t) ] + c.c. } , where G ± satisfies the boundary-value problem 

(G ±) zz − k 2 ±G ± = 0 , for − 1 /μ < z < 0 , (4.10)

(G ±) z − ω 

2 
±G ± = 

1 

ε3 

[
−2 i ω ±εμ

d S ±
d T 

+ R 

(3) 
± + R 

(4) 
±

]
, at z = 0 , (4.11)

(G ±) z = 0 , at z = −1 /μ, (4.12)

with 

R 

(3) 
± = 

1 

4 

i αεμ(−1) n ω 

3 ω n AS ∗∓e −i βT − 1 

4 

ε3 ω 

4 k 2 (1 + M 

2 ) | S ∓| 2 S ±, (4.13)

and 

R 

(4) 
± = −ε3 

[ 
(−6 − 8 M 

2 − 2 M 

4 ) k 4 | S ∓| 2 S ± + (−3 + 8 M 

2 − M 

4 ) k 4 | S ±| 2 S ±
] 
. (4.14)

The solvability condition is thus 

−2 i ω ±εμ
d S ±
d T 

+ R 

(3) 
± + R 

(4) 
± = 0 , (4.15)

which finally yields 

d S ±
d T 

= − (−1) n 

4 

ω n ω 

2 αAS ∗∓ − i 

256 

ω 

7 α2 
[ 
(−3 + 8 M 

2 − M 

4 ) | S ±| 2 S ∗± − (2 + 4 M 

2 + 2 M 

4 ) | S ∓| 2 S ±
] 
. (4.16)

Taking M = 1 reduces, in principle, to the 2D solution equation (5.9) by Kadri and Akylas [4] . However, there is a factor of

two in the first term, and a factor of a half in the last third term of (4.16) , that arise from higher order terms that were

originally neglected by Kadri and Akylas [4] . 
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4.2. Inner-outer region 

Since the wavelength of the acoustic mode far exceeds that of the gravity mode, when gravity modes generate an acoustic

mode part of the interaction is expected to occur in the inner region of the acoustic mode, yet in the outer region of the

gravity modes. Thus, the mixed potential takes the form 

ϕ = ε

[ 

S + (T ) e | k + | z 
√ 

1 

r 
e i ( b 2 k + r−ω + t) + c.c. 

] 

+ ε

[ 

S −(T ) e | k −| z 
√ 

1 

r 
e i ( b 2 k −r−ω −t) + c.c. 

] 

+ α
[ 

A (T ) cos ω n (Z + 1) e i (M μκr−ωt) + c.c. 

] 
+ · · · . (4.17) 

By using a similar argument to those employed in the previous section, the solvability conditions lead to the governing

equations for A and S ± , 

d A 

d T 
= i A 

(
κ2 − ω 

2 
n 

2 ω 

3 
− 2 β

)
+ (−1) n 

2 αω n 

ω 

2 r 

[ 
1 

4 r 2 
+ (b 2 2 + 1) k 2 

] 
e i (b 2 −M ) μκr S + S −, (4.18) 

d S + 
d T 

= − (−1) n 

4 

αω n ω 

2 AS ∗−e i (M−b 2 ) μκr − i α2 

ωr 
N 1 | S + | 2 S + − i α2 

ωr 
N 2 | S −| 2 S + , (4.19)

d S −
d T 

= − (−1) n 

4 

αω n ω 

2 AS ∗+ e 
i (M−b 2 ) μκr − i α2 

ωr 
N 

∗
1 | S −| 2 S − − i α2 

ωr 
N 

∗
2 | S + | 2 S −, (4.20)

where 

N 1 = 2 

(
1 

4 r 2 
+ b 2 2 k 

2 
)(

3 

4 r 2 
− i b 2 k 

r 
− b 2 2 k 

2 + 2 k 2 
)

+ 

(
1 

2 r 
− i b 2 k 

)
2 

(
3 

4 r 2 
+ 

i b 2 k 

r 
− b 2 2 k 

2 − 4 k 2 
)

− 3 k 4 , 

N 2 = 4 

(
1 

4 r 2 
+ b 2 2 k 

2 
)(

3 

4 r 2 
− i b 2 k 

r 
− b 2 2 k 

2 

)
+ 2 

(
1 

2 r 
− i b 2 k 

)
2 

(
3 

4 r 2 
+ 

i b 2 k 

r 
− b 2 2 k 

2 + 2 k 2 
)

− 2 k 4 . 

Note that r enters as a parameter in the evolution equations. Therefore, the spatially dependent case should have extra

terms that are of the same form as the ones derived earlier in (4.9) where the gravity modes are essentially standing waves

relative to the acoustic mode. 

4.3. Outer-outer region 

In the outer-outer region all modes obey (3.2) , thus the velocity potential takes the form 

ϕ = ε

[ 

S + (T ) e | k + | z 
√ 

1 

r 
e i ( b 2 k + r−ω + t) + c.c. 

] 

+ ε

[ 

S −(T ) e | k −| z 
√ 

1 

r 
e i ( b 2 k −r−ω −t) + c.c. 

] 

+ α

[ 

A (T ) cos ω n (Z + 1) 

√ 

1 

r 
e i ( b 2 μκr−ωt) + c.c. 

] 

+ · · · , (4.21) 

where A was normalised by exp (−i b 3 )(2 /πb 1 μκ) 1 / 2 . Next, we substitute the ansatz into the governing Eq. (2.1) and the

boundary condition (2.4) , and derive the evolution equations. Repeating the same procedure as before, the governing equa-

tions for A and S ± read 

d A 

d T 
= i A 

(
κ2 − ω 

2 
n 

2 ω 

3 
− 2 β

)
+ (−1) n 

2 αω n 

ω 

2 
√ 

r 

(
1 

4 r 2 
+ b 2 2 k 

2 + k 2 
)

S + S −, (4.22) 

d S + 
d T 

= L AS ∗− − i α2 

ωr 
N 1 | S + | 2 S + − i α2 

ωr 
N 3 | S −| 2 S + , (4.23)

d S −
d T 

= L 

∗AS ∗+ −
i α2 

ωr 
N 

∗
1 | S −| 2 S − − i α2 

ωr 
N 

∗
3 | S + | 2 S −, (4.24)

where 

L = − αω n 

2 ω 

2 
√ 

r 
(−1) n 

[
ω 

4 

2 

− 1 

r 

(
1 

2 r 
− i b 2 k 

)]
(4.25) 

and 
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N 3 = 4 

(
1 

4 r 2 
+ b 2 2 k 

2 
)(

3 

4 r 2 
− i b 2 k 

r 
− b 2 2 k 

2 

)
− 1 

r 

(
1 

2 r 
− i b 2 k 

)(
1 

4 r 2 
+ b 2 2 k 

2 + k 2 
)

+ 2 

(
1 

2 r 
− i b 2 k 

)
2 

(
3 

4 r 2 
+ 

i b 2 k 

r 
− b 2 2 k 

2 + 2 k 2 
)

− 2 k 4 . (4.26)

Again, the spatial dependence in the exact resonant situation should be the same as derived earlier in (4.9) . 

5. Results and discussion 

In the inner-inner region, the nature of interaction is almost identical to the 2D case. On the other hand, in the outer-

outer region and far from the origin, the amplitudes tend to zero due to radial dispersion, and thus there is effectively no

more resonant interactions. The more interesting scenario is the interaction involving the mixed regions, i.e. inner for the

acoustic, and outer for two gravity modes. 

To gain a quantitative understanding of the 3D resonant interaction we solved numerically the amplitude Eqs. (4.18) ,

(4.19) , and (4.20) (including both temporal and spatial dependence) for two cases. In the first case, the computations focused

on Gaussian initial amplitudes for all modes, A (0) = exp (−r 2 ) , S ±(0) = exp (−r 2 ) . In the second case, the acoustic mode was

instead considered to be infinitely long ( κ = 0 ), which acted as a vertically oscillating layer. In both cases an explicit Runge-

Kutta method was implemented, and only the leading acoustic mode (n = 0) was considered. 

In the first case, since the two gravity waves are effectively standing in space, they interact resonantly creating an acous-

tic ‘shock’ followed by acoustic ripples, as illustrated in Figs. 1 and 2 . Here, the 3D solution (magenta) is similar to the 2D

solution (black). However, a remarkable difference is that in the case of 3D waves, the gravity wave amplitudes either focus

or defocus in time, whereas in the 2D case the gravity wave skewness changes. This is rather intuitive, as in the 2D case
Fig. 1. Amplitude spatiotemporal evolution of a triad comprising two gravity waves (top) and an acoustic mode (bottom), for the 3D mixed-field solution 

(magenta) and 2D solution by Kadri and Akylas [4] (black). The initial conditions are A (0) = S ±(0) = exp (−r 2 ) , α = 0 . 1 , γ = 0 , κ = 1 , grid size �r = 0 . 05 , 

and time step �t = 0 . 0025 . 
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Fig. 2. Evolution of waves at the surface from an acoustic mode A (0) = exp (−r 2 ) , interacting with two gravity waves, S ±(0) = exp (−r 2 ) , with α = 0 . 1 , 

γ = 0 , κ = 1 . 

Fig. 3. Evolution of Faraday-type waves from a gravity disturbance S ±(0) = exp (−r 2 ) α = 0 . 4 , γ = 0 . 5 , interacting with a long-crested acoustic mode of 

A (0) = 1 , and κ = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the gravity waves travel from one side to the other, whereas in the 3D case the gravity waves travel radially inwards or out-

wards. Since the two gravity waves exist simultaneously, the combined amplitude is comparable to the combined amplitude

of the 2D case. The increase in amplitude of the acoustic wave reflects nonlinear interactions between three modes. 

The second case is analogous to a surface gravity disturbance (Gaussian) of frequency ω over a fluid layer that is subject

to vertical oscillation, e.g. due to underwater tremor, at double the frequency. The interaction excites subharmonic standing

field of Faraday-type waves of frequency 2 ω, as shown in Fig. 3 . The analogy between the long-crested acoustic mode and

an oscillating liquid is made possible since the interaction occurs at the surface, i.e. for the gravity waves the water layer is

a half space. However, the applicability of the theory to laboratory scales, e.g. in an analogy to an oscillating bath, is by no

means straightforward. The main difficulty is that under the current rigid bottom assumption, the frequency of the acoustic

mode should be unrealistically high to exist. However, Kadri [7] argued recently that one could overcome this difficulty by

considering an elastic bottom instead, which modifies the dispersion relations, though not the structure of the evolution

equations: 

ω 

2 = ω 

2 
n + κ2 + μ

ω 

2 
n − κ2 − (ω 

2 
n + κ2 ) E 1 /μ

ω 

2 
n + κ2 + μE 2 / 2 

+ O (μ2 ) , (5.1) 

where E 1 and E 2 represent elastic terms that are found from the boundary conditions. Under these settings, the result in

Fig. 3 , could be analogous to the generation of Faraday-type waves in a laboratory-size container. 

As a final note, the motivation behind the proposed approximation is to allow collecting secular terms in a non-integral

form, which otherwise becomes awkward when employing exact Bessel functions that involve quadratic and cubic products

of zeroth, first and second derivatives of the Bessel functions. For example, the product of the first derivative of two modes

can be of the form J −1 (k + r) J −1 (k −r) − J −1 (k + r) J +1 (k −r) − J +1 (k + r) J −1 (k −r) + J +1 (k + r) J +1 (k −r) , and it is not obvious how this

term resonates with the third mode presented by J 0 ( μκr ). On the other hand, the proposed approximation uses complex

analysis which allows collecting secular terms in a straight forward way, e.g. exp ( i k + r) exp ( i k −r) ≡ exp ( i μκr) clearly satis-

fies the resonance condition k + + k − = μκ . To validate the results numerically, one could seek a full numerical solution of

eqs. (2.1) , (2.2) and (2.4) , with (2.20) . An alternative would be using exact Bessel solution with an attempt to numerically

identify secular terms. Both options are beyond the scope of this study and are left for future work. 
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