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Ekman Dynamics
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Wind Stress

m  Wind blowing over the sea surface produces a force per unit area called the
wind stress.

m The effects of the wind stress are transmitted down into the water column
by the action of turbulent eddies generated by breaking waves and
boundary shear stresses.

m Lef's consider a 2D example, with wind in e >
the x-direction at the ocean surface. S

frictional stresses

m  Horizontal momentum is transferred in

the vertical direction. ocean current
m For small dz, the stress is proportional to A e A U(z+dz/2)
the velocity difference between z+dz and dz' —=(2)
z+dz/2: =7 R I Ju(z-dz/2)
r.'c.! = Fiz T f
0z

where A, is the “eddy viscosity™. —
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Ekman Layer Thickness

m The Ekman equations are a balance between rotation and friction:

-

O e
m Taking: ) -fV=A, ﬁ (1)
we eliminate v and: oz°
5 L y o
DEJ'+F|.5UZD f{u+U)=&,E 2)

Ekman Equations

m The solution of this equation is given by:

TR e i R T 08 Bl Y

5= |

| £1/2 is the Ekman layer thickness

where

m Note that the Ekman layer doesn't depend on U. It depends only on
f12 and A,'2. The idealized turbulent eddy viscosity coefficient A,
used instead of molecular viscosity, is assumed to be constant with
depth although variants on this have been proposed.
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Ekman Spiral

m  Due to the appearance of the velocity in the y-direction, the velocity vector
changes direction within the Ekman layer.

m  As each layer of fluid is frictionally retarded by the layer beneath it, the response
of the velocity of the upper layer, due to the planetary rotation, is to furn slowly,
producing a spiral as z decreases to zero.

m Fig. represents the vectors projected
onto the bottom plane. Numbers
indicate the relative distance from i
the plane to the bottom. e

m As the bottom approaches, z—0,
and from u=Ull-e “"cos(z/5,)]

Ekman spiral

it follows: ¥=Ue " sin(z/;)

. ¥
lim—=1
=0 1y

m So, the velocity vector has turned
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Ekman Transport

m The mass transport per unity of area in the Ekman layer is calculated by:
Mx=_[vﬁdz=— "Ue ""“fu:'chI[L"L.-’i?rlitflf.'i:=—Ui u
: " ' 2 > M=§(-i+)
{:':,' T
M, =U-=
: 2

m The stress exerted by the rigid surface atz = 0 is:
Tl [T L . RS R
r=—pA, [I = le=o H— L-u] 5 pU(i+ j).

g

m  Taking the vectorial product between the stress t and the unit vector in the

z-directon: rxk=r1,i-7 ﬁvﬁﬂ{ gy
E
oo B
= Multiplying the above term by 5./ 5¢, we have: 7xk= %(-l +])
which gives: M, = rxk This means that the Ekman transport is 90°
= of to the right of the frictional stress (NH)
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Ekman Surface Layer

= Using the boundary conditions:

——;JAL |
'?1.-' :

I:Er

'-"".r

m (1) at the surface (z = 0):

r:_r N _pﬁ'-' T |:-I}
Oz

m (2) Below the Ekman layer (z—-=):  ii(z = -x)—0
v(iz—=—o0)—=0

= ThenA,=A;=0andA,=iA, with , _ f..ﬁ;;[l—i]
20A,

m S0, substituting the constants back

to the solution, we have:

e T [
e f | —4+—
0= \"r_ﬁ' ! {5;: 4]
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So, at the surface ﬁ{g] - —_.1;‘.,_.5.," ke gfn(
ii(z =n}=£v;, J2pA, Iy
surface current 2
at 45° to the V2 r &,
i ﬂ — "'_lll"l' v u ] +1"r £
right (NH) Me=0= 2 IS Vo #7 v"'_Pf’v
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Ekman Transport

m  Similarly to the Ekman bottom layer, we can
also calculate the integrated transport in the
surface layer: rxk

pf ——

dbagid b e s iyt Ry o Gy apby, Y% od
Feprling - i | TN

Ekman transport is 90° to the
right of the wind stress in the Northern Hemisphere
left of the wind stress in the Southern Hemisphere

Questions:
m  Given a typical eddy viscosity coefficient is of order
102 m2 s, and fis ~ 104 s, e %

1. Then what is the order of magnitude of Ekman layer?

2. How strong is the surface current produced by a wind i T
stress of 0.1Pa? A

L
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Ekman Summary (so far)
Surface Current:
45° to the right (left) in the NH (SH)
Ekman layer detph: 5, = ' 2
K ﬁ[z=ﬂ}=£v
W(z=0) = -gv;]

Ekman transport:
90° to the right (left) in the NH (SH)

M=
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Global Wind Pattern

In the globe we have 3 major wind
systems in each hemisphere:
Polar easterlies, mid-latitude westerlies
and the trade winds (easterlies)

« Look at the direction of the winds
below and answer what happens to
the Ekman transport?

+  What happen to this
convergence (divergence)?
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Ekman Pumping

m Integrating the continuity equation from the bottom oM X oM

to the top of the Ekman surface layer, we have: ox oy

where w, is the vertical velocity at the ocean surface and
we is the vertical velocity at the bottom of the Ekman layer.

m But w, is negligible compared to wg. Using the relations between M and t, we
define the Ekman pumping velocity:

WE =ld;"?:.‘r¢:E

m This is a very important property of Ekman dynamics because it allow us to
know what happen with a flow that convergences or divergence in the ocean.
m This relation says that a clockwise wind pattern (negative curl) in the
Northern Hemisphere generates downwelling, whereas a counterclockwise
wind pattern causes upwelling. The directions are opposite in the Southern
Hemisphere. .
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Ekman Pumping

direction, but varying in intensity

y = s
m Consider the stress field in the x- ,F:E @ & (=) @ )
h

in the y-direction. S>> —3 = > € —« M
'! '! [} i 1 1 [ i " '
m The Ekman transport is to the L T O T
right of the applied wind stress. o e Aupweling

mBecause the wind stress intensity is varying, the transport also varies and causes
convergence and divergence in certain regions.

mTo conserve mass, fluid is sucked into the Ekman layer at a rate proportional to the
divergence of the Ekman flux (wg = 0).

mThe inverse occurs in the convergence regions.

mSo0, there is a net movement of water away from equator. As a consequence, there is
a positive Ekman pumping that causes upwelling in the eguator.
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Ekman Pumping

min the subtropics, where midlatitude westerlies and the trades coalesce, the net
transport generates convergence (subtropical gyres). It generates an upward bulge
in the sea surface (and a downward depression of the thermocline).

mThese bulges are very slight, i.e.
changes of order O(1m) over
distances of 100's of km.
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Coastal Upwelling Revisited: Ekman, Bakun, and Improved
Upwelling Indices for the U.5. West Coast
Michael G. Jacox' |, Christopher A. Edwards® |, Elliott L. Hazen' |, and Steven J. Bograd' |

"MOAA Southwest Fisheries Science Center, Monterey, CA, USA, “NOAA Earth System Research Laboratory, Boulder, 00,
USA, “University of California, Santa Cruz, CA, USA I

Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are
disproportionately productive relative to their surface area, particularly in the world's major eastern
boundary upwelling systemss, Along oceanic eastern boundaries, equatorward wind stress and the Earth's
rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly,
positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from
below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively
nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the
base of the marine food web. Ekman theory is foundational and underlies the caloulation of upwelling indices
such as the "Bakun Index” that are ubiguitous in eastern boundary upwelling system studies. While generally
valuable first-order descriptions, these indices and their underlying theory provide an incomplete picture
of coastal upwelling. Here we review the relevant dynamics and limitations of classical upwelling indices,
particularly related to representation of the surface wind stress, the influence of geostrophic currents, and the
properties of upwelled water. To address these shortcomings, we present two new upwelling indices for
the LS. West Coast (31-47°N), which are available from 1988 to present, The Coastal Upwelling Transport
Index and the Biclogically Effective Upwelling Transport Index provide improved estimates of vertical
transport and vertical nitrate flux, respectively, by leveraging technological and scientific advances realized
since the introduction of the Bakun Index nearly a half century ago.
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Figure 1. (a) Mean 1988-2017 sea surface height (in color) and wind stress (arrows) during the upwelling season (March-

August) off the central/northern California coast, obtained from the California Current System Regional Ocean Modeling

System reanalyses; (b) schematic representation of a coastal section corresponding to the white line in (a), showing key
TR/ components of the upwelling dynamics of central importance to this paper: Alongshore wind stress (r), an alongshore sea
ocC surface height gradient, Ekman transport [UH‘L geostrophic transport | , vertical transport (W), and the depth of the

/e surface mixed layer (dashed line).
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Flgure 2. Mean 1988-2017 vertical velocity at the base of the mixed layer
during the upwelling season (March-August), obtained from the Regional
Ocean Modeling Systern reanalyses. The 3° Fleet Numerical Metearology and
Deeanggraphy Center sea level pressure grid is overlaid, with filled circles
indicating locations used historically for calculation of the Bakun Index. Black
limes outline regions of integration for the new upwelling Indices.

shelves, with sustained upwelling favorable winds, and in regions of strong
stratification (Barton et al, 1977, Estrade et al, 2008; Jacox & Edwards,
2017; Lentz & Chapman, 2004). Similarly, curl-driven upwelling can be
important very close to shore, particularly in the lee of capes and head-
lands where expansion fans in the manne boundary later oocur within tens
of kilometers of the coast (Dever et al, 2006; Fiechter et al, 2014; Koradin &
Dormam, 2000; Pickett & Paduan, 2003}, Furthermore, wind products with
higher spatial resolution show the coastal wind drop-off occurming in a
narrower coastal band [(Capet et al, 2004), increasing the overlap of
estimated upwelling due to coastal divergence and wind stress curl,
Thius, while upwelling variability near shore is out of phase with upwelling
variability farther offshore (Jacox et al, 2014)] neither can be attributed
solely to coastal divergence or wind stress curl,

3. Revisiting the Bakun Index

The Bakun Index methodology was originally laid out in two technical
reports (Bakun, 1973, 1975) that while highly cited are challenging to
obtain. A more accessible report by Schwing et al. (1996) also details the
Bakun Index calculation, and we review it here. While some of the details
of the Bakun Index calculation have changed over time, the methodology
has not. Here we present the original calculation described by Bakun
(1973) and implemented by NOAA. After this overview we describe
changes employed in subsequent iterations of the indesx.

An estimate of sea level pressure (SLP) is obtained from an operational
atmospheric model run by the US. Navy’s Fleet Numerical Metearology
and Oceanography Center (FNMOC), formerly the Fleet MNumerical
Weather Center. SLP gradients are then estimated at the grid points
corresponding to upwelling index locations (Figure 2) by calculating the
pressure difference between grid points on either side and dividing by
the distance between them. Because the initial FNMOC grid resolution
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Figure 3. Climatological ransport estimates ane ploted against latitude for (top) transport mdices as described by Bakun (1973, 1975) (a) Ekman transport estimated
frarm in 4w wind measurerments (adapted from Bakun, 1973), (b) Bakun Index caleulated from manthly 3% sea level pressure (SLP) helds (adapted from Bakun, 1973),
() Bakun Index calculated from d-howdy 3° SUP fields (adapted from Bakun, 15975) and (bottom) transport indices caloulated 1988-2017; (d) Ekman transport
estimated from Californla Current System Regional Ocean Modeling System reanalysis winds, (e} Bakun Index caboulated from &-hourly 1° SLP fields, (f) revised
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In addition to uncertainties in the Ekman transport calculation, the Bakun Index does not (and does not try to)
capture several important contributors to upwelling dynamics. First is wind stress curl-driven upwelling asso-
ciated with alongshore wind gradients (i.e., dro"/dy for a coastline oriented in the y-direction), though the
Bakun Index does inherently include wind stress curl-driven upwelling associated with zonal gradients in
the alongshore wind stress (i.e, dr,'/dx) inshore of the location where the index is calculated. Second is
the contribution of the cross-shore geostrophic flow. If the constraint of no horizontal pressure gradient is
removed from Ekman theory, equation (1) for the zonal velocity becomes

and equation (2) becomes

UEk =13 Ugea -

4

T

_lad on

Cp iz Cy
T, gDa
pf 0

o
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(7)

where y is the free surface height, g is the gravitational acceleration, and L#° is the zonal geostrophic trans-

TRAINING WORKSHOP ON “THE CANARY CURRENT EASTERN BOUNDARY UPWELLING SYSTEM”

OCEAN SCIENCE CENTRE MINDELO (OSCM)
C/O INSTITUTO DO MAR MINDELO 10-12 MARCH 2020

i

e ek "t

23—

| Ministério da
|Economia Maritima

Hasi
OsCmM

Jnd i igman Deemre
[



4. Improved Upwelling Indices

¢ The Coastal Upwelling Transport Index (CUTI, pronounced “cutie”), which is comparable to the Bakun Index in
that it is an estimate of the total volume of water upwelled or downwelled in a given time period (i.e., the vertical
volume flux into or out of the surface layer).

e Second is the Biologically Effective Upwelling Transport Index (BEUTI, pronounced “beauty”), which is an
estimate of the total quantity of nitrate upwelled or downwelled in a given time period (i.e., the vertical nitrate flux
into or out of the surface layer). BEUTI therefore quantifies not only the intensity of upwelling but also the quality
of upwelled waters in terms of their nutrient content, which can strongly influence productivity independent of the
surface wind strength (Jacox, Bograd, et al., 2015; Jacox et al., 2016).

Note: here, the ocean state estimates and surface wind forcing are obtained from historical reanalyses of the CCS
produced using the Regional Ocean Modeling System (ROMS) with 4-dimensional variational data assimilation.

This method accounts for Ekman transport associated with alongshore wind stress as well as wind stress curl in both
the alongshore and cross-shore directions. In contrast, Ekman transport estimated from alongshore wind stress at
some offshore location (as in the Bakun Index) omits Ekman suction/pumping associated with alongshore wind stress

gradients.
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Figure 8. {left) Long-tenm mean, (middle) seasonal climatology, and (right) interannual variability (12-month running mean) of CUTE and multiple versions of the
Bakun Index (BUI, plotted against latitude (left panel) or at select latitudes (middle and right panels). The long-term mean Ekman transport component of CUT) is also
plotted for comparison. Indices are shown for 1988-2017. Note scale differences an y-axes of middle and right panels. CUTI = Coastal Upwelling Transport Index
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tude (left panel) or at select latitudes (middle and right panels), Indices are shown for 1938-2017, Note scale differences on yaxnes of middle and right panels,
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7.2. Creating Similar Indices for Other Regions

A key strength of the Bakun Index is that in theory it can be calculated for any coastline in the global ocean. In
regions where the oceanographic model output needed to calculate CUTI or BEUTI are unavailable, SLP (or
better yet surface wind stress) from atmospheric reanalyses can be used to estimate upwelling. We suggest
calculating Ekman transport as we have here, by integrating along all boundaries of the region of interest
rather than rotating winds and estimating offshore transport. Integration around the region of interest elim-
inates the need for estimating the coastline orientation, ensures that Ekman transport/pumping associated
with alongshore and cross-shore variations in the wind are captured, and enables more accurate closure of
the transport budget. In regions where high-resolution oceanographic analyses are available, the methodol-
ogy presented here can be applied to create similar indices.

==)»  \We must see together what is the best to compute it for the Canary System
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6.3. RECENT CHANGES AND TRENDS OF THE UPWELLING INTENSITY
IN THE CANARY CURRENT LARGE MARINE ECOSYSTEM

Aissa BENAZZOUZ', Hervé DEMARCE and Gonzalo GONZALEZ-NUEVD'
¥ Institut National de Recherche Halieutique. Morocco
?Institut de Recherche pour le Développement. France

' Centro Oceanografico de Vige, Instituto Espafiol de Oceanografia, Spain

6.3.2. DATASETS

We use two homogeneous datasets from spatial observation: a 30 years 55T series from the AVHRR
(Advanced Very High Resolution Radiometer) version 5.2 day-time for the time period September 1931 to
December 2011 (http://www.nodc.noaa.gov/sog/pathfinder at 4 km resolution, accessed on 15 October
2014}, and the global wind CCMP (Cross-Calibrated Bulti-Platform) from July 1987 until 2010 funded under
the United States National Aeronautics and Space Administration (NASA) Earth Science Enterprise (Atlas et
al., 2010).
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Wind stress formulation:
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Sydeman et al (2014) : a metadata analysis based on the results of

Rewrarch) model-tata neanalycic
proieet. Thadd Hr B4TmA!es B
IO FREretion of CoOnShansy e
e wing lensiscaion ypothesis;
bars shinw the esliTated peobabilty
(= 95% confcience niervals).
Mt ahove B Dars cedn the
munFibeer of Dremds contributing Lo
i it eslimabe angd confderce
viawal, The dashed horgondal loes
dengles e nul ypothesa of egual
probateily of ncressing or
derressing weds

COMSISTENCY

== Anmusl Data
I Dessrvailons
Emm— Wotred D

22 studies from the published litterature.

Sydeman, W. )., M. Garcia-Reyes, D. 5. Schoeman, R. R.

Rykaczewski, 5. A. Thompson, B, A, Black, and 5. J. Bograd

(2014), Climate change and wind intensification in coastal
upwelling ecosystems, Science, 345(6192), 77-80.

Details on the 198 time-series that were
considered by Sydeman et al. 2014 (SM) :

-80 based on NCEP/NCAR reanalysis
-46 based on ship reports and COADS
-28 based on pressure derived indices
-23 based on data from buoys



Composite CCMP wind (several satellite sources, 1988-2019)
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Wind seasonnality (CCMP) from monthly averages (2008)
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Climatological wind seasonnality (CCMP) from monthly averages
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Computation of the wind-based Ekman upwelling index
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An improved coastal upwelling index from sea surface temperature @m
usimg satellive-based approach — The case of the Canary Current

upwelling system
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Fig. 4. [a) Climatological mean {S-day averages) of the OCMP satellite wind speed and direction, averaged from 30 to 150 km from the coast, for the period 1988=2010,
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Fig & (a) space-time Hovmaoller plot of the OUle, index computed from the 1931-2001 time series, Values 2, 4 and G °C are contoured. (b} Seasonal variabilicy (three weeks
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Fig. 10. Climatological Coastal Upwelling Index based on coastal and offshore S5T difference for the period (1987-2006) as produced by Marcello (2011) with (a) their
original colors (b) enhanced colors with negative values in white and {¢) computed with our own methodology, with the same scale and colors.
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Fig. 15. Comparative scasonal and interannual varability of the U, (plain lines) and the CSET from the COMP wind (doted lines) from 1988 o 2000 for three contrasied
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Figure 46. (a) August SST climatology derived from the 1Bl Reanalysis product (reference period: 2002-2014). (b) Surface Zonal Velocity
(positive values not shaded): August climatology derived from IBI Reanalysis (reference period: 2002-2014) (bc) and (c) monthly field for
August 2015 from the Bl operational near-real-time Forecast Service (cd). See text for more details on data use.
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